接下来,叶哩信息网将给大家介绍国家公务员考试题的相关信息。希望可以帮你解决一些烦恼。

国家公务员考试考多少道题?

国家公务员考试考多少道题?

国考行测一共有135道题,考试时限120分钟,满分100分。

言语理解与表达部分,总共40个题目,每个题目0.6分,共计24分。数量关系部分,总共20个题目,每个题目1分,共计20分。常识部分,总共25个题目,每个题目0.5分,共计12.5分。资料分析部分,总共20个题目,每个题目1分,共计20分。

判断推理部分,总共35个题目,图形推理每个题目0.5分,定义判断每个题目0.8分,类比推理每个题目0.5分,逻辑判断每个题目0.8分,共计23.5分。行测占比25%,行测中的言语、判断和资料是重点。

国考公共科目的考查范围

行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素。

申论是测查从事机关工作应当具备的基本能力的考试科目。申论考试按照省级(含副省级)综合管理类、市(地)以下综合管理类和行政执法类职位的不同要求。

设置两类试卷:前者主要测查报考者的阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力;后者主要测查报考者的阅读理解能力、贯彻执行能力、解决问题能力和文字表达能力。

2020国家公务员考试行测鸡兔同笼问题有什么好的方法吗?

到底什么是鸡兔同笼问题呢相信很多考生还有点迷糊,鸡兔同笼问题是行测理科试题中的一个重要类型,其实这类题型自古就有记载。据《孙子算经》记载:今有雉兔同笼,上有35头,下有94足,问雉兔各有几何这就是最初的鸡兔同笼问题。当然举一反三,很多符合这类题型特征的都可归类为鸡兔同笼。那么这特征是什么呢难道是在题目当中看到出现鸡和兔的问题,就想到这是个鸡兔同笼问题呢答案肯定不是!接下来中公教育专家跟大家一起来看一下鸡兔同笼问题的特征:

按照《孙子算经》的记载,题干已经告诉我们头的总数和脚的总数,并且隐含条件鸡有一个头两只脚,兔有一个头四只脚。因此我们这样归纳鸡兔同笼的特征:已知某两种事物两个属性的指标数和指标总数,分别求个数问题。在以后解题中,只要题干符合这个特征,我们就可以认定是鸡兔同笼问题。

例如:一共有20道题目,答对一道得5分,答错或不答扣一分,要答对多少道题,才能得82分

这个题它是不是一个鸡兔同笼问题我们就看它符不符合这个特征,题中告诉我们,答对一题和答错或不答一题是两个事物,并且告诉我们事物的两个属性:题目和得分,指标数分别为对一道5分,错一道负1分,指标总数是一共20道题,一共得82分,所以它符合鸡兔同笼的特征,是一个鸡兔同笼问题。

再如:某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件就能得到工资10元,每做一个不合格零件将被扣除5元。已知某人一天共做了12个零件。那么他在这一天做了多少个不合格的零件

这个题是不是一个鸡兔同笼问题呢我们也看一下它是否符合这个特征,题干告诉我们合格零件和不合格零件是两个事物,并且告诉我们事物的两个属性:个数和工资,指标数分别为:一个合格零件10元,一个不合格零件扣5元,指标总数是12个零件,但是它还缺少一个指标总数,即没有告诉我们共得的工资!所以它不符合鸡兔同笼问题,这就不是鸡兔同笼问题。我们要怎么样修改它才能变成鸡兔同笼问题呢只要在题干中告知工资总数,然后再让我们求不合格零件或者合格零件多少个,它才可以变成鸡兔同笼问题。

我们知道了什么样的问题是鸡兔同笼问题了,该如何求解呢

首先我们回忆一下小学阶段的学习中我们就接触过鸡兔同笼问题,最容易理解的方法也是这个时候学习到的,就是画图法。只不过当时接触的题目数据要小很多。是这样的一道题:

一个疯狂的农夫把鸡和兔子放在了一个笼子里,数了数一共有10个头,26条腿,帮帮农夫算算有几只鸡、几只兔子

为了能让小学生清晰的记住其中的数量关系,采取了画图的方法:

1、一共有10个头,那我们就用圆圈画出10个头:

画图添加算式,清晰明了,但是我们遇到了一个问题,当题干数目较大时,比如开始我们讲的《孙子算经》记载的问题,画图就比较麻烦了,但是通过这个画图的思想,我们不难总结出,其实在给每一个头都画2条腿的过程,就是假设所有的动物全是鸡,进而找到差异进行计算的。

那么推荐给大家的方法是假设法:鸡兔同笼,只有鸡和兔两种动物,不是鸡就是兔,所以我们既可以假设全是鸡也可以假设全是兔,那么到底我们假设全是鸡还是全是兔呢理论上假设全是鸡或兔都是可以的。

假设全是鸡,一只鸡2只脚,35个头有70只脚,而实际上题干告诉我们的脚有94只,少了24只脚,这说明不全是鸡!我们把一只鸡变成一只兔,它将多出两只脚,现在要多出24只脚来:用24÷(4-2)=12,什么意思就是说把12鸡变成12只兔,它将会多出24只脚来,所以兔有12只,鸡就有23只,这个题我们就解答完了。可以看出用假设法解决鸡兔同笼问题还是比较简单和快捷的。

中公解析:假设全是鸡:35×2=70

实际94

少24÷ (4-2)=12(兔)

鸡:35-12=23(只)

可以看出,假设法在解决鸡兔同笼问题时是比较高效的。那么根据这个方法,一起来解决一下下面这道考试真题。

例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两个教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办培训27次,每次培训均座无虚席,当月培训1290人次,问甲教室当月共举办了多少次培训

A.8 B.10 C.12 D.15

在甲教室培训和在乙教室培训是两个事物,并且告诉我们事物的两个属性的指标数即甲教室每次可以坐50人,乙教室每次可以坐45人;指标总数是一共培训27次,共培训1290人次,所以它符合鸡兔同笼的特征,属于鸡兔同笼问题。

甲教室 表示鸡;乙教室 表示兔;

27次 表示头;1290人次 表示脚。

中公解析:假设全是甲教室:50×27=1350

实际1290

多60÷ (50-45)=12(乙教室)

甲教室:27-12=15

归根结底,其实鸡兔同笼问题并不难,只要我们做到熟记鸡兔同笼问题的特征,判断所做题型是否属于鸡兔同笼问题;然后再用假设法解题,基本就不成问题了。

中公教育专家认为,考生们掌握这些基础知识还远远不够,还需要大家不断夯实和练习,通过大量练习,掌握各类题型,才能做到胸有成竹。祝大家有所收获,取得优异的成绩!

国家公务员考试考多少道题?

国考行测一共有135道题,考试时限120分钟,满分100分。

言语理解与表达部分,总共40个题目,每个题目0.6分,共计24分。数量关系部分,总共20个题目,每个题目1分,共计20分。常识部分,总共25个题目,每个题目0.5分,共计12.5分。资料分析部分,总共20个题目,每个题目1分,共计20分。

判断推理部分,总共35个题目,图形推理每个题目0.5分,定义判断每个题目0.8分,类比推理每个题目0.5分,逻辑判断每个题目0.8分,共计23.5分。行测占比25%,行测中的言语、判断和资料是重点。

国考公共科目的考查范围

行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素。

申论是测查从事机关工作应当具备的基本能力的考试科目。申论考试按照省级(含副省级)综合管理类、市(地)以下综合管理类和行政执法类职位的不同要求。

设置两类试卷:前者主要测查报考者的阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力;后者主要测查报考者的阅读理解能力、贯彻执行能力、解决问题能力和文字表达能力。

2020年国家公务员考试:速解牛吃草问题

在公务员考试行测中,数量关系一直都是让考生脑浆炸裂的部分,为了让大家快速的掌握答题技巧,中公教育专家也针对不同题型总结了一些巧妙的方法,今天就让中公教育专家带大家一起了解一下“牛吃草问题”。

一、牛吃草模型

【例1】一个牧场长满青草,牛在吃草而草又在不断生长,已知牛10头,20天把草吃尽,同样一片牧场,牛15头,10天把草吃尽。如果有牛25头,几天能把草吃尽

【例2】牧场上长满牧草,秋天来了,每天牧草都均匀枯萎,这片牧场可供10头牛吃8天草,可供15头牛吃6天。可供25头牛吃多少天

这些题目中有牛有草,牛在吃草前,草地上就有固定量的草且又出现了一大段以排比句形式告诉我们的已知条件,像这样的题型我们统称为“牛吃草”问题,当然还有一些题目中不涉及牛和草,但也属于这类问题的变形,后面我们会展示出具体的练习题,接下来我们看一看对于这样的题我们应该怎么解决他呢

二、解题技巧

1、追及模型解题

我们一起来分析一下例1这道题。牧场上原有的草量是一定的,草每天生长,牛每天来吃。要想把草吃完那么必须满足牛吃草的>草长的,我们很容易发现,其实牛吃草问题就是行程问题中的追及问题,也就是牛在追着草吃,既然是行程问题中的追及问题,我们马上就想到公式:距离和=差X时间,我们来看一看,这里的距离和就相当于原有草量,差也就是牛吃草的-草生长的,分析题目可知无论供几头牛吃多少天,原始草量都是不变的,根据条件我们即能列方程进行求解。

【中公解析】假设每头牛每天吃一份量的草,草生长的为x,吃光草时间为t,根据题意可得(10-x)×20=(15-x)×10=(25-x)×t 解出 :t=5天。

根据这道例题我们也总结出了面对追及型的牛吃草问题我们的答题思路:设每头牛每天吃1份草,牛的头数为N,草生长为X,原有草量为M,即得公式M=(N-X)*T,根据原有草量为定值列出方程组求解即可。

2、相遇型牛吃草问题

我们来看一下例2这道题和例1有什么区别,这里面的草不仅不生长了,还在以一定的减少,牛在吃草,草在以相反方向减少,这个就很像我们行程问题中的相遇问题,公式:距离差=和X时间,还是的思路,无论怎么变,原始草量都是不变的,我们即可列出方程求解。

【中公解析】假设每头牛每天吃一份量的草,草生长的为x,可供25头牛吃草时间为t,根据题意可得(10+x)×8=(15+x)×6=(25+x)×t 解出 :t=4天。

根据这个例题我们也总结出相遇型牛吃草问题的常用公式M=(N+X)*T遇到此类问题时同样找出不变量列方程组即可求解。

3、多个草场牛吃草问题

【例3】有一草地,40亩草地的草,20只羊18天可以吃完,25亩草地的草,12只羊30天可以吃完。问60亩草地的草,多少只羊9天可以吃完

这道题跟前两题有些不一样,他涉及了很多草场,原始草量也不一样,不符合我们牛吃草的模型也办法直接列方程组进行求解,那我们来思考一下是否可以给它改改条件但是不影响题目中的已知条件还可以让我们用牛吃草的模型解决问题,既然它原始草量不一样我们可不可以给它们扩大相应的倍数即使他们的原始草量相同,对所有草量用最小公倍数进行统一。取40,25,60的最小公倍数600.题干就等同于600亩的草量300只羊吃18天,288只羊吃30天,问供多少只羊吃9天现在就变成了我们标准的牛吃草模型,设草的生长为x,600亩可以让n只羊吃9天,根据原始草量相同列出方程:(300-x)×18=(288-x)×30=(n-x)×9 求得n=330,所以60亩草地9天吃完需要羊数量为330÷10=33。

面对此类题目时我们通常取操场草量的最小公倍数,把它变成标准的牛吃草问题再进行求解,这里要注意的是,随着草场扩大,牛的头数也要进行相应倍数的扩大,否则则改变了题目中的已知条件。

当然在考试中一些题还是会以其他的方式出现,迷惑我们,但它也属于牛吃草问题,我们看几道练习题。

【练习1】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了

A.2

B.1.8

C.1.6

D.0.8

【答案】D。中公解析:此题虽未体现出牛与草的字眼,但原有人数不变,又以排比形式告诉我们已知条件符合牛吃草模型,即可根据上述公式列方程求解,设开两个收银台付款t小时就没有顾客了,则根据原有人数相等可列关系式(80-60)×4=(80×2-60)×t,解得t=0.8。

【练习2】某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采(假定该河段河沙沉积的相对稳定)

A.25

B.30

C.35

D.40

【答案】B。中公解析:符合牛吃草模型,根据原来沉积的泥沙不变即可列方程求解,设该河段河沙沉积为x,则可以列出方程(80-x)×6=(60-x)×10,解得x=30,因此要想河沙不被开采枯竭,开采必须≤沉积,取极值也就是当二者相等时,即沉积为30,又因为此类问题我们通常设“牛每天吃一份量的草”对应到这道题中即每天沉积一份量的泥,因此得到结果最多供30人开采。

其实牛吃草问题并不难,只要找到不变量,列出方程组即可进行求解。